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Mathematics possesses not only truth but supreme beauty, a
beauty cold and austere, like that of sculpture, sublimely pure
and capable of a stern perfection, such as only the greatest art
can show. —Bertrand Russell

Around the time Ruth Vollmer (born Landshoff) and her
husband, Hermann, had to leave Germany in 1935 because
of her Jewish faith, two important books concerning the cri-
sis of Anschauung, or sense-perception, were published. The
©.. onewas by David Hilbert, in 1932, and the other by
. Edmund Husser], in 1936. In his Die Krise der europdischen
. Wissenschaﬁen und die transzendentale Phdnomenologie (The
. Crisis of the European Sciences and the Transcendental
Phenomenology), Husserl identified this crisis with the
. rationalization of the sciences, especially with the “Galilean
mathematization of nature,” in which “the latter itself
" became reduced to mathematical diversity.” During the
" industrial and political revolutions that took place in Europe
: after 1800, rationalization and the tenets of the Enlighten-
~ment dominated scientific thought, which bid farewell to
- political and ideological absolutism in the name of progress.
But Husser] claimed that science, in abandoning experience
nid history for the purely abstract, had instituted its own cri-
Against this formulation of the modern world as “more
metrico” and against the “non-visual symbolism” of
thematics, he proposed Anschauung, or contemplation,
tion, and visualization: “In the current act of measuring
“Otwvisual objects of experience all we gain are empirical-inex-
Variables and figures.” Husserl evidendy disliked vari-
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ables and numbers, formulae and figures—in short, mathe- 1
matics—because of their abstract, rational character and
their lack of visual symbolism. For him, only Anschauung,
with its visual character and as a visual experience of the |
world, encompassed the historical experience. This reduc-

tion to a mathematical diversity of nonvisual character and

to a mere science of fact constituted the crisis in the

European sciences, as it led to science losing its “signifi-

cance for life.” Precisely at this point, the crisis of science

became a crisis of life, and only a return to history and the

“lifeworld” (Lebenswelt) could free us. Like the Romantics,

Husser] evoked history as the highest authority for our

actions. With history, he proposed a determinism that S
excluded free will—the ability to choose.

FW.J. Schelling, the philosophical championof 5z .
Romanticism, had already claimed, in his System des T
transzendentalen Idealismus (System of Transcendental
Idealism) of 1800, that only through “intellectual contem-
plation” and “congenial intuition”—that is, Anschauung—
could one grasp the absolute, the highest form of knowledge.
This romantic program was in sharp contrast to the philoso-
phy of the Enlightenment, which rested on the power of
rational thought. Therefore, G.W.F. Hegel, in his Die
Phinomenologie des Geistes (Phenomenology of Spirit),
which he penned in Jena in 1806, saw himself in opposition
to the Romantics, whom he accused of “not construing, but
feeling and contemplating the Absolute, and it is not the con-
cept thereof, but the emotion and contemplation of it that are
meant to lead the way to be expressed.” Hegel stated that the




Absolute could not be gained through Anschauung (contem-
plation and intuition) but only through the labor of the “con-
cept” (Begriff). For him, Romanticism marked the end of art,
because philosophy, in the guise of self-awareness, had taken
the place of religion and art in the search for absolute truth.
In the battle between Anschauung and abstraction, Hegel
(and Immanuel Kant as well) voted clearly for abstraction.
Abstraction, the Enlightenment, and rationalization formed
the block against Anschauung and experiential evidence in
the search of truth. The legitimacy of modern science was
founded on abstract concepts and mathematical formulae.
That a formula like e=mc? could become so famous shows
the culmination of this tendency, which started in sync with
the beginning of the industrial, technical, and political revo-
lutions around 1800.

The great eighteenth-century mathematician Joseph Louis
Lagrange wrote in the preface to his influential book
Mécanique andlytique (Analytical Mechanics; 1788): “One
will not find figures in this work. The methods that T
expound require neither constructions, nor geometrical or
mechanical arguments, but only algebraic operations, subject
to a regular and uniform course.” Lagrange expressed most
radically the conviction of his time, that only mathematical
rationalization could explain the world correctly. Only a
mathematical analysis of the mechanics of the world could
give us the absolute truth. Any trace of Anschauung had to be
expelled as a possible contamination of the pure “construc-
tion of the Absolute,” as Hegel defined it around the same
time. Lagrange’s rejection of any image or graphical con-
struction, even of a geometrical proof, in order to achieve the
ideal mathematical form was the climax of the “mathematiza-
tion of nature” that Husser] bemoaned and that the scientific
community acclaimed.

Lagrange had the reputation of being Europe’s best math-
ematician. In 1766, he followed Leonhard Euler as presi-
dent of the Berlin Academy, where he worked until 1786.

In his books Théorie des fonctions analytiques (1799) and
Legon sur le caleul des fonctions (1801), Lagrange gave math-
ematics its strength by assiduously avoiding the use of visual
materials, Anschauung, or “intuition,” using only algebraic
tools and operations. Classical mechanics was given mathe-
matical form by Euler and Lagrange. Lagrange not only influ-
enced later mathematicians such as Carl Friedrich Gauss and
Bernhard Riemann, but also the nineteenth-century physicist
Hermann von Helmholtz and even ph.ilosophers like Kant
30

and Hegel in their fight for analyticity and rationality instead
of Anschauung and intuition. ,

Coincidentally, in 1790 Lagrange also formulated a
mathematical problem commonly known as “Plateau’s prob-
lem,” after Joseph Plateau. Plateau solved it experimentally
using soap films on wire frames—those same soap films that
would later fascinate Ruth Vollmer. Lagrange’s problem was
to fit a minimal surface to the boundary of any given closed
curve in space. A surface may be “minimal” in respect to the
area occupied or to the volume enclosed, the area being the
surface that the film creates when it fills up a ring, whethera
plane or not. The geometers ate apt to restrict the term “min-
imal surface” to forms such as these, or, more generally, to all
cases where the mean curvature is nil; the others, being only
minimal with respect to the volume contained, are called
“surfaces of constant mean curvature.” If we limit ourselves
to surfaces of evolution—that is to say, to surfaces symmetzi-
cal about an axis—we find that there are six in all: the plane,
the sphere, the cylinder, the catenoid, the unduloid, and a

curious surface Plateau called the nodoid. The sphere is, of
all possible figures, that which encloses the greatest volume
with the least area of surface (see Jacob Steiner’s Einfache
Beweise der Isopermetrischen Hauptsdtze [Simple Proofs of
the Isopermetric Axioms; 183 6]). As such, the sphere is not
only an idea] body mathematically, but also biologically. Oil
globules and soap bubbles are wonderful examples of the
sphere in nature, 2 model for the organic cell as being ina
“steady state” simulating equilibrium. In 1930, Jesse
Douglas and Tibor Rado would prove Plateau’s problem
mathematically with the help of the Dirichlet principle, for
which Douglas was awarded the Fields Medal, the “Nobel
Prize” of mathematicians, in 1936.
1t is evident that Ruth Vollmer knew this history of
minimae areae, as the titles of some of her works, like Steiner
Surface (1970), suggest. Her interest in soap bubbles,
demonstrated by the film Soap Film Forms in 1974, is also
well known. It is interesting and evident that the concept of
. minimal surfaces in connection with volume and space
played a central role in the paintings of modernism and in
the minimal and conceptual art of the sixties—miore than
150 years later. Vollmer’s interest in these mathematical
objects, more than the artistic aumosphere of New York in the
sixties, provided the context for the evolution of her sculp-
tures. She realized, in a very original way, that the problems
and descriptions of surfaces of revolution, viewed through the
lens of modern ast, could be reinterpreted and constructed as

aesthetic problems of contemporary sculpture. Her focus on
these surfaces of revolution, on minimal surfaces, reveals her
exceptional understanding of sculptural issues of the twenti-
eth century. Questioning and defining the boundaries of
closed curves in space is the last moment of modern sculp-
ture, still treated as a volume, before it dissolved into acts of
enactment (the “happenings” of the Fluxus group) or acts

of naming (conceptualism’s embrace of the idea as the real
substance of art). At the same time, this interest in spheres,
cylinders, undoloids, and catenoids shows Vollmer's aware-
ness of the kinetic aspects of sculpture, expressed through the
search for thermodynamic equilibrium. Therefore, Vollmer
was interested not only in Platonic (idealized) mathematical
objects, but also in how the constraints of nature shape bio-

- logical forms after these mathematical and thermodynamic

- laws. Her sculptures are sites of both abstraction as ideal

- mathematical models (like Pascal’s spiral) and Anschauung as
concrete biological organisms (like a shell).

One of the founders of statistical mechanics and thermo-
dynamics, Josiah Willard Gibbs, was equally interested in
this equilibrium of abstraction and Anschauung, in the sense
of visualization, in dynamics and geometry. In two papers of
1873, “Graphical Methods in the Thermodynamics of
Fluids” and “A Method of Geometrical Representation of the
Thermodynamic Properties of Substances by Means of
Surfaces,” Gibbs illustrates the problem of surfaces, of ther-
modynamically stability, using graphical means. A sculptural
odel of this graphical presentation of fluids in motion

ists, and is a wonderful demonstration of the possible mix
abstraction and Anschauung that would also be realized by

Underlying the dichotomy of abstraction and Anschawung,
find a much deeper opposition that is between theory and
perience, as hinted at by Husserl. Before the successful
.thematization of nature by modern physics, experience
ame before theory. In modern science, theory comes before
E : tience. This triumph of theory over experience further
4ggravated the conflict between abstraction and Anschauung.
traction has advanced to such a high complexity that mod-
5 m.thematics and physics now go far beyond Anschauung,
Scoming not only the languages of the Unanschauliche—the
g nutab.le.——but also the languages of the incomprehensi-
Bur I’-h‘lS is precisely the reason why we construct these
tical models, because they help us to understand the
nature better than our sense-perception could ever do.
bor of concept” (Hegel) turned the world of experience

into a world of mathematical formulae on paper, and these
formulae in turn have transformed the real world.

Theoretical physicist James Clerk Maxwell, in his seminal
paper “A Dynamical Theory of the Electromagnetic Field”

(1865), used the dynamics of Lagrange and his analytical
methods to postulate the existence of electromagnetic waves,
giving mathematical expression to Michael Faraday’s 1821
discovery of electromagnetism. In 1887, Heinrich Hertz
succeeded in proving that the postulated electromagnetic
waves did indeed exist. Hertz turned theory into experience,
providing an experimental proof—by showing that electrical
signals can travel through open air—for Faraday’s and
Maxwell’s theory. The physics of the nineteenth and twenti-
eth centuries declared clearly the primacy of theory over expe-
rience. As a result, Hans-Jérg Rheinberger and Michael
Hagner could even speak of Experimentalsysteme in den biolo-
gischen Wissenschaften 1850/1950 (Experimental Systems
in the Biological Sciences 1850/1950; 1993).

Around 1800, pictures were strictly forbidden in mathe-
matical books if their authors wanted to be taken seriously.
These books of science were what Husserl had in mind when
he blamed the crisis of European science on the loss of expe-
rience and history. But one hundred years later, around
1900, pictures twiumphantly returned, in two ways: first, as
Veranschaulichung des Unanschaulichen (visualization of the
abstract); and second, as the revaluation of intuition—
Anschauung.

So we see on the one side the triumph of theory and
abstraction, the explanation of mechanics and motion in
mathematical terms. The description of the world in mathe-
matical expressions has as its result the technical revolution
of the nineteenth and twentieth centuries. This school%f &~
thinkers was opposed to Anschauung and pictures, because
pictures deceive and are only valid for specific cases.
Formulae describe laws and ideas beyond particularities.
This approach could be described as Platonic.

On the other side we have mathematicians and physicists
like Henri Poincaré, who did not dismantle visually oriented
work in mathematics and even supported intuition. In his
1899 paper “La logique et I'intuition dans la science mathé-
matique et dans I'enseignement” (Logic and Intuition in
Mathematical Science and Teaching), he wrote: “And even
though pure mathematicians could do without intuition, it is
always necessary to come back to intuition to bridge the abyss

which separates symbol from reality.” Even pure mathemati-
cians need intuition to create new theorems. Poincaré even




drew pictures and figures to llustrate his ideas. And Dutch
mathematician Luitzen Egbertus Jan Brouwer, around
1911, established a doctrine of intuitionism that viewed the
nature of mathematics as mental constructions governed by
self-evident laws.

In the early nineteenth century, pictures, diagrams, and
figures took a three-dimensional turn as mathematical mod-
els, used by Gaspard Monge, in France, and in the latter part
of the century by Alexander Brill, Karl Weierstrass, and Felix
Klein, in Germany. Klein wrote the influential book Lectures
on the Icosahedron (1913), and he promoted the use of
mathematical models in teaching. Built from wood and plas-
ter, wire and paper, glass and brass, they looked like objects
made by artists, and therefore like modern sculptures; they
were widely used, particularly at the mathematics institute of
the University of Gottingen, where they served not only to
teach “spatial intuition” to students, but also to support
progress in abstraction. Their aim, finally, was to picture the
Unanschauliche—the unvisualizable. It is evident that these
models, especially those from the Géttingen institute, served
as one of the starting points for the abstract sculpture of the

carly avant-garde in the twentieth century, and especially for
Ruth Vollmer. In art movements such as constructivism and
abstraction-création, and in the work of Naum Gabo, Antoine
Pevsner, Etienne Béothy, and Georges Vantongerloo, among
others, you can see these influences of the “mathematical sen-
sibility” the futurists spoke of in their 1914 manifesto,
"Geometric and Mechanical Splendour and the Numerical
Sensibility,” written by Filippo Tommaso Marinetti. This
interest in mathematics by the early avant-garde was also con-
tinued in the neo-avant-garde, from Max Bill to Mario Merz,
and influenced the development of both minimal and con-
ceptual art.

Central to the visualization approach—to make the unin-
tuitable intuitable—was the chair of the mathematics depart-
ment at the University of Géttingen, the eminent mathe-
matician David Hilbert, who was known as a formalist. In his
book (with Stephan Cohn-Vossen) Anschauliche Geometrie
(1932; published in English as Geometry and the
Imagination in 1952), Hilbert embraced the Anschauliche
(the intuitable, the visual), as the title already suggests. In the
preface to the book, he writes:

In mathematics, as in any scientific research, we find
two tendencies present. On the one hand, the tendency
toward abstraction seeks to crystallize the logical rela-
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tions inherent in the maze of material that is being
studied, and to correlate the material in a systematic
and orderly manner. On the other hand, the tendency
toward intuitive understanding fosters a more immedi-
ate grasp of the objects one studies, a live rapport with

. them, so to speak, which stresses the concrete meaning
of their relations.

As to geomeny, in particular, the abstract tendency
has here led to the magnificent systematic theories of
Algebraic Geometry, of Riemannian Geometry, and of
Topology; these theories make extensive use of abstract
reasoning and symbolic calculation in the sense of alge-
bra. Notwithstanding this, it is still as true today as it
ever was that intuitive understanding plays a major role
in geometry. And such concrete intuition is of great
value not only for the research worker, but also for any-
one who wishes to study and appreciate the results of
research in geometry.

In this book, it is our purpose to give a presentation
of geometry, as it stands today, in its visual, intuitive
aspects. With the aid of visual imagination we can illu-
minate the manifold facts and problems of geometry,

and beyond this, it is possible in many cases to depict
the geomerric outline of the methods of investigation
and proof, without necessarily entering into the details
connected with the strict definitions of concepts and
with the actual calculations.

Hilbert would even go so far as to say that the propositions
of geometry would be just as true if one took the terms “line,”
“point,” “place,” and replaced them with “table,” “chair,”
“mug.” For him, there was no gap between symbol and reality,
between abstraction and concretion, between Platonism and
realism. Also, his friend Hermann Minkowski, who, like
Klein and Hilbert, taught in Géttingen, reconceptualized
pure number theory in visual terms in Geometrie der Zahlen
(The Geometry of Numbers; 1896).

So we could say that the Géttingen School was the site for
the Anschauliche in mathematics, and that Ruth Vollmer was

- its artistic heir. What does this mean? Precisely that her posi-

tion, too, resided between abstraction and Anschauung,
between the mathemartical modeling of space and the
Anschauung of space, between spheres of numbers and
spheres of life, between topology and biology. Therefore,
Vollmer could exercise influence on Eva Hesse, who had close
contact with her, and on Sol LeWitt.

Like the Bauhaus School, Vollmer transported the Euro-
pean tradition of the mathematical mentality in the arts and
in design (for example, the early “abstract ornaments” of the
Wiener Werkstitten) to North America. Her work did not
derive from that of R. Buckminster Fuller or from architec-
ture generally. Rather, it is closer to instruction manuals like
Mathematical Models (1961) by H. Martyn Cundy and A.P.
Rollett, or Polyhedron Models (1971) and Spherical Models
(1979) by Magnus J. Wenninger, who cites the mathemati-
cian and logician Bertrand Russell: “Mathematics possesses
not only truth but supreme beauty, a beauty cold and austere,
like that of sculpture, sublimely pure and capable of a stern
perfection, such as only the greatest act can show.” Russell
| connected mathematics to sculpture because of its purity and
cold perfection—its sublimity. This, too, could have been a
source of Vollmer’s fascination with “mathematical forms,”
as LeWitt called her sculptures, denying their sculptural sta-
tus in favor of describing them as “ideas made into solid
forms. The ideas are illustrations of geometric formulae; they
are found ideas.” Minimalist sculptures, too, are sublimely
puze and capable of a stem perfection, and certainly owe a lot
to the problems of surface, minimae areae, and space antici-
pated by the mathematics of the nineteenth century. But the
e of Vollmer is more complex. The art world has the ten-
ncy to accept natural forms like human bodies, flowers,
agimds, et cetera, and even models of natural forms, which
are, essentially, what figurative sculptures are. Models of nat-
ital forms are accepted as selfsustaining works of art due to
the tomantic tradition of Anschauung, which still dominates
art world. A marble sculpture of a person’s body, being in
2 model of that person in three dimensions, is not ques-
ned as a work of art. But a marble sculpture of a mathe-
cal object or a Platonic body like a regular polyhedron,
equally in fact a model (of a Platonic idea), is, strangely
6ugh, not readily accepted as a work of art. Just as shells, as
els of natural forms, are accepted as artworks, so should
SPiK s as mmodels of mathematical forms, especially those cre-
ated in the age of minimalist sculpture. This might have been
as in LeWitt’s mind when he spoke of “mathematical
In relation to Vollmer's sculptures instead of the dom-
thropomorphjc and biological forms of traditional
\:l'ure. Therefore, it is interesting to see Vollmer situated
En.LeWiL‘c, Walter De Maria, Carl Andre, and Robert
iy in the chapter “Systers Elementary and Complex” of
las and Elena Calas's Icons + Images of the Sixties from

Because of the status of Vollmer's sculptures—as lying
somewhere between abstraction and Anschauung, between
topology and biology—her work is closer to more contempo-
rary sculptural practices, like that of Olafur Eliasson, for
example, than to the works of the minimalists with whom
she is often aligned. On the one hand, one can ref;*rence her
work in the images of the nine regular solids, from Platonic
(five) to Kepler-Poinset (four), and the various polyhedra in
physicist Alan Holder’s Shapes, Space, and Symmetry
(1971), which, indeed, look very similar to some works by
Robert Smithson and Donald Judd. The same is even more
valid for John Borrego’s Space Grid Structures: Skeletal
Frameworks and Stressed Skin Systems (1968), an overview
of international architecture and design, since systems,
structures, and grids played a central role in the conceptual
and minimal art of the sixties. But, on the other hand, one
can refer Vollmer’s work to the biological interpretation of
mathematical models and ideas that started for artists with
the magnificent work On Growth and Form (1917), by
D’Arcy Wentworth Thompson, which was followed in 1933
by George D. Birkhoff's Aesthetic Measure and in 1952 by
Hermann Weyl's Symmetry. These interpretations culminat-
ed in papers like “Patterns of Growth of Figures:
Mathematical Aspects” (1962) by the Polish mathematician
Stanislaw Ulam, in Module, Proportion, Symmetry, Rhythm
(1966), edited by Gyorgy Kepes (the successor of Ldszls
Moholy-Nagy as director of the Chicago Bauhaus or School
of Design); and in genetic algorithms developed, for exam-

ple, in The Algorithmic Beauty of Plants (1990) by
Przemyslaw Prusinkiewicz and Aristide Lindenmayer, and
Digital Design of Nature (2005) by Oliver Deussen and

Bernd Lintermann. (Vollmer was familiar with an earlier vol-

ume, Patterns in Nature by Peter S. Stevens, which wa’;pug-
lished in 1974.) Today, after the triumphant return of the
visual with the invention of fractals by Benoit Mandelbrot
(see his The Fractal Geometry of Nature of 1982), the sci-
ences, from medicine to astronomy, are using visualization
methods in perfect legitimization, and three-dimensional
visualizations are popular like never before.

Between 1998 and 2004, the German philosopher Peter
Sloterdijk published three volumes with the title Sphéiren
(Spheres): Blasen (Bubbles), Globen (Globes), and Schaume
(Foams). Here, again, we encounter the terminology of
Plateau’s problem and the conflict between abstraction and
Anschauung. In these books, which center around the sphere
as ideal mathemarical and biological form, Sloterdijk




develops a history of mankind as the evolution and construc-
tion of spheres, from mother's womb to Fuller's geodesic
dome. The history of human housing as the artificial control
of natural atmospheres builds the horizon in which being is
not defined in relation to time, as Martin Heidegger did in
Sein und Zeit (Being and Time; 1935), but in relation to
space; we could, therefore, paraphrase Heidegger's title as
Sein und Raum (Being and Space) or Sein und Sphére (Being
and Sphere). This biological and anthropological interpreta-
tion of mathematical models resides precisely in the German
tradition of the opposition between abstraction and
Anschauung, but it has the virtue of dedefining established
positions and giving them a much deeper foundation.
Sloterdijk gives an old philosophical problem a new reading
by turning the sphere into the focus of being. Vollmer's
achievement as an artist, her concentration on spheres and
polyhedra, can be seen as a step toward Sloterdijk's philoso-
phy of spheres: sculpture as a biological and mathematical
form, as a model of both mankind and mathematics,
Anschauung and abstraction. Art, for many, resides in the
domain of intuition (Anschauung), and mathematics, in the
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domain of abstraction. But as the title of a wonderful book
of 1973 by the great Hungarian matheatician Rényi
Alfréd shows, a combination and convergence of the two is
possible: Ars Mathematics. This could also serve as the
inscription on the gate to the territory of Vollmer's art.
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LEFT: DIODON, OR COMMON PORCUPINE FISH

RIGHT: ORTHAGORISCUS MOLA, OR SUNFISH. THE VERTICAL
CO-ORDINATES WERE DEFORMED INTO CONCENTRIC CIRCLES AND THE
HORIZONTAL COORDINATES INTO A SYSTEM OF CURVES. THE NEW
OUTLINE SHOWS THE SUNFISH, WHICH 1S CLOSELY ALLIED TO THE
PORCUPRINE FISH. FROM D'ARCY WENTWORTH THOMPSON, ON GROWTH

AND FORM (1917)




